Commercial & Industrial

Energy Storage Solutions

FOR US MARKET

Renon Power

We Care About Sustainability

With our own R&D team and automated production factory, we are dedicated to delivering innovative, reliable, and affordable energy storage solutions to customer globally.

At Renon, we believe that sustainable energy is the future. We are passionate about reducing carbon emissions and preserving our planet for future generations. That's why we invest heavily in research and development, leveraging the latest technologies to design and manufacture energy storage systems that are efficient, scalable, and adaptable.

Our products are designed to meet the needs of a wide range of applications, from residential and commercial buildings to industrial facilities and utility-scale projects. Whether you're looking to reduce your energy bills, increase your energy independence, or support your sustainability goals, Renon has the right solution for you.

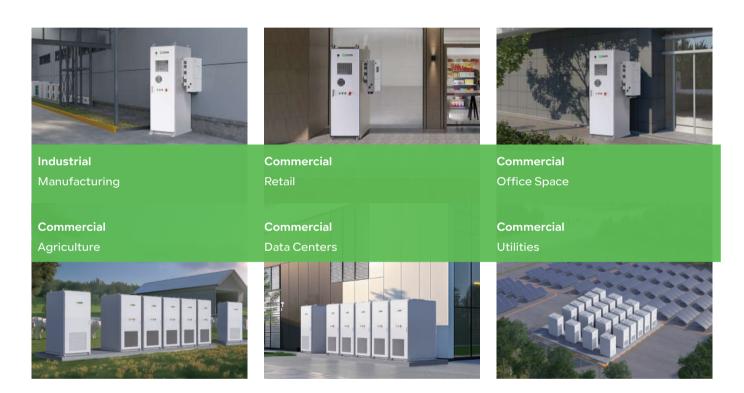
Our commitment to quality and customer satisfaction is unwavering. We work closely with our clients to understand their unique needs and provide customized solutions that meet or exceed their expectations. We also provide comprehensive technical support, maintenance, and warranty services to ensure that our customers get the most out of their investment.

JOIN US ON OUR MISSION TO MAKE RENEWABLE ENERGY WITHIN REACH.

PROVIDE INNOVATIVE,
RELIABLE, AND
AFFORDABLE ENERGY
STORAGE SOLUTIONS
TO CUSTOMERS

WORLDWIDE.

Content


Meeting the highest standards of quality and safety in the global market.

Industry Application	01
Products	02
Renon EMS	33
Installation Cases	37
Renon Exhibition	38

Industry Application

Renon's energy storage products are extensively applied across residential, commercial, and industrial sectors. With exceptional performance, cutting-edge technology, and efficient energy management, they provide reliable, innovative, and eco-friendly energy solutions, helping global users achieve their sustainability goals.

As a company that values renewable energy, we are passionate about developing solutions that contribute to a greener, more sustainable future. Our products are designed to reduce carbon emissions and promote environmental conservation.

Products

Our integrated C&I solutions offer autonomous energy storage and management for commerce and industry.

Commercial & Industrial BESS

P03 ECube 60AP

P07 MPack 233A

P13 MCombiner

AC Combiner System

P15 MCombiner Pro

P17 MCombiner PV

Cabinet Fast DC Charging System

P19 MPack 233C

Distribution Container System

P25 Smart Matrix A

Portable BESS

P29 XGen

ECube 60AP

60kWh Air-Cooling Battery

The ultimate commercial and industrial energy storage solution with optimized temperature control, high-rate energy cycling, comprehensive fire and gas safety detection, and advanced integrated power management technologies.

RENON

Product Function

Efficient Energy Storage

Stores 60kWh of electricity for future use, ensuring a stable energy reserve. It supports multiple energy inputs, including solar power, diesel generators, and the grid, providing flexible power integration.

Smart Load Balancing

Optimizes energy usage by charging during off-peak hours and discharging during peak demand, helping balance the grid load. By leveraging time-of-use pricing, it effectively reduces electricity costs.

Intelligent Energy Management

Utilizes an advanced Energy Management System (EMS) to optimize charging and discharging strategies. Remote monitoring and management capabilities enhance operational efficiency and system performance.

Reliable Backup Power

Acts as an emergency power source during grid failures, ensuring critical equipment remains operational. With uninterrupted power supply capabilities, it is ideal for data centers, hospitals, and other essential facilities.

Independent Off-Grid Power

Provides a reliable power supply in areas without grid access, making it suitable for homes, businesses, and communities. As a core component of microgrids, it ensures stable and efficient energy distribution.

Scalable & Flexible Design

Features a modular design that supports parallel system integration for expanded capacity. Its flexible configuration allows adjustments in power output and storage capacity to meet diverse energy needs.

Product Features

High Energy Density

Built with high-energy-density batteries, this system features a compact design, making it ideal for space-constrained environments. Its lightweight structure enhances ease of installation and transportation.

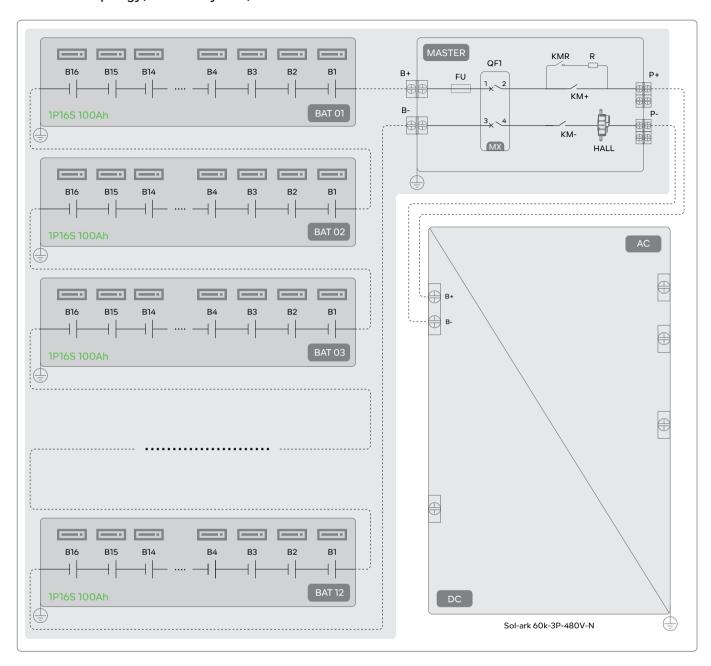
Extended Lifespan

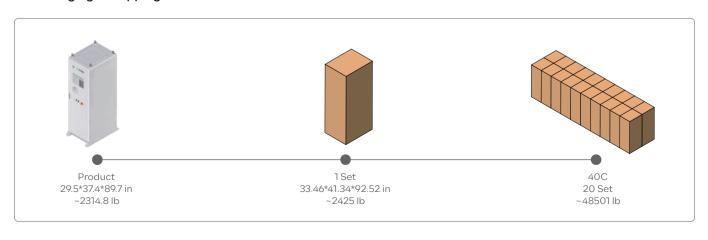
High-Efficiency Power Conversion

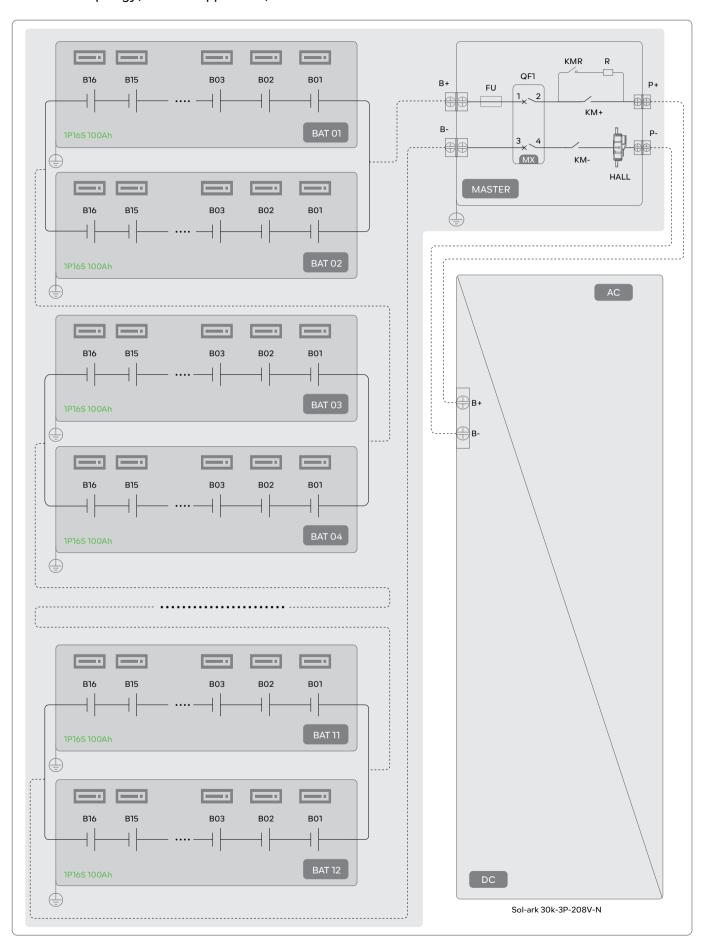
With superior charge and discharge efficiency, it minimizes energy loss while delivering millisecond-level response times to meet urgent power demands.

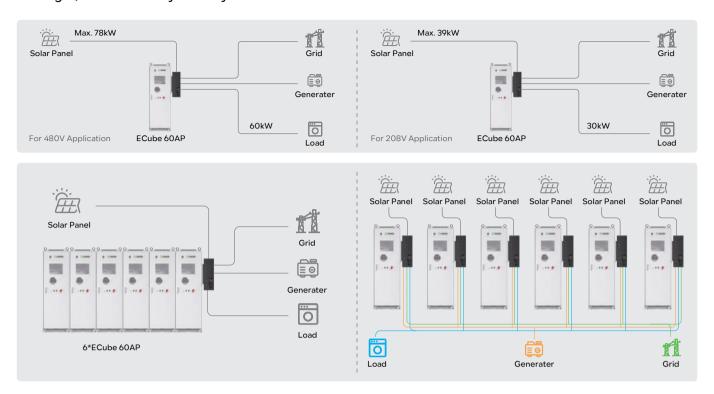
Enhanced Safety & Reliability

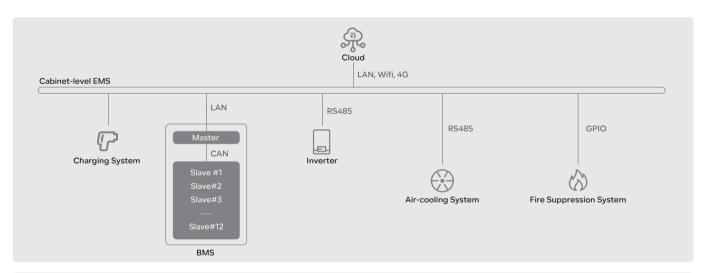
Equipped with multiple protection mechanisms, including safeguards against overcharging, over-discharging, overheating, and short circuits. Fire-resistant materials and flame-retardant design further enhance operational safety.

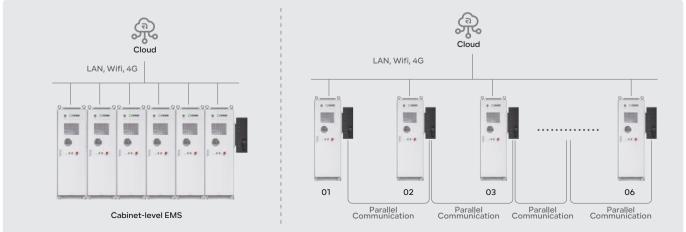

Application Scenario




Product Topology(For 480V System)


Packaging & Shipping Details


Product Topology(For 208V Application)



Single / Max. Parallel System Layout

Energy Management System(EMS) Structure

Product Parameter(For 480V Application)

Cell Chemistry	LiFePO ₄
Module Energy (kWh)	5.12
Module Nominal Voltage (V)	51.2
Module Capacity (Ah)	100
Battery Module Combination	12S1P
System Nominal Voltage (V)	614.4
System Operating Voltage (V)	562.5~681.6
System Energy (kWh)	61.44
Charge/Discharge Current (A)	95

PV Input	
Max. Allowed PV Power (STC)(kW)	78
MPPT Voltage Range (V)	150~850
Start up Voltage (V)	180
Max. Input Voltage (V)	1000
Max. Operating Input Current per MPPT (A)	36
Max. Short Circuit Current per MPPT (A)	55
No. of MPP Trackers	4
No. of PV Strings per MPPT	2
Max. AC Coupled Input (kW)	60

Charging System(Optional)	
Charging Type	Charging Mode 3 Case c, level 2
Outlet Options	AC Type 1 (SAEJ1772)
Input/Output Current Ratin	g (A) 32 / 48 / 80
Input/Output Power Rating	(kW) 7.7 / 11.5 / 19.2@240VAC
Input/Ouput Voltage (Vac)	208~240
Input Frequency (Hz)	50/60
Cable Length	16 feet, Optional: 25 feet
Distribution Systems	Single phase, split-phase
Connector Type	L1 + L2 + PE
Certifications	UL2594, UL2231-1, UL2231-2, UL1998 JL991FCC Part 15 ClasS B, ENERGY STAR

AC Output (EPS)		
Nominal AC Voltage (3 ⊕)(\	′)	277/480
Grid Frequency (Hz)		50/60
Real Power, Max continuou	ıs (3Φ)(kW)	60
Max. Output Current (A)		72.3
Peak Apparent Power (10s,	off-grid, 3Φ)(kV/	A) 90
Max. Grid Passthrough Cur	rent (10min)(A)	200
Continuous Grid Passthrou	ıgh Current (A)	180
Power Factor Output Rang	ie	±0.8 adjustable
Backup Transfer Time		5ms (adjustable)
CEC Efficiency		96.5%
Design (DC to AC)		Transformerless DC
General Parameters		
Product Model		R-EC060060A1-US
System Scalability		Max. 6 System in Parallel
Dimension - W*D*H (in)		29.5*37.4*91.3
Weight Approximate (lb)		~2314
Operation Temperature (°C	C/°F)	-30~55/-22~131
Communication Interface		CAN, RS485, WiFi, LTE
Humidity(RH)	5%	~85%, non-condensation
Altitude	≤4000m/13122ft	(2000m/6561ft derating)
IP Rating		IP55
Storage Temperature (°C/°	'F)	-20~35/-4~95
Recommend Depth of Disc	charge	90%
Cycle Life		>8000 cycles
Warranty		10 years
Certification (Battery)	А	ANSI/CAN/UL 1973:2022 NSI/CAN/UL 9540:2020 C Part 15 Subpart B:2023
Certification (Inverter)	& 1547a-2020	UL 1741-2021 (UL1741SB) o 107.1-16, IEEE 1547-2018 & 1547.1-2020 (SRD V2.0) CS, UL1699B, CEC, SGIP 4

Battery Energy Storage	
Cell Chemistry	LiFePO
Module Energy (kWh)	5.12
Module Nominal Voltage (V)	51.2
Module Capacity (Ah)	100
Battery Module Combination	6S2F
System Nominal Voltage (V)	307.2
System Operating Voltage (V)	281.3~340.8
System Energy (kWh)	61.44
Charge/Discharge Current (A)	95
PV Input	
Max. Allowed PV Power (STC)(kW)	39
MPPT Voltage Range (V)	150~500
Startup Voltage (V)	180
Max. Input Voltage (V)	550
Max. Operating Input Current per I	MPPT (A) 36
Max. Short Circuit Current per MP	PT (A) 55
No. of MPP Trackers	2
No. of PV Strings per MPPT	2
Max. AC Coupled Input (kW)	30
Charging System(Optional)	
Charging Type	Charging Mode 3 Case c, level 2
Outlet options	AC Type 1 (SAEJ1772
Input/Output Current Rating (A)	32 / 48 / 80
Input/Output Power Rating (kW)	7.7 / 11.5 / 19.2@240VAC

Charging System(Optional)		
Charging Type		Charging Mode 3 Case c, level 2
Outlet options		AC Type 1 (SAEJ1772)
Input/Output Current Rat	ing (A)	32 / 48 / 80
Input/Output Power Ratir	ng (kW)	7.7 / 11.5 / 19.2@240VAC
Input/ouput voltage (VAC))	208~240
Input Frequency (Hz)		50/60
Cable Length		16 feet, Optional: 25 feet
Distribution Systems		Single phase, split-phase
Connector Type		L1 + L2 + PE
Certifications		2594, UL2231-1, UL2231-2, UL1998 CC Part 15 ClasS B, ENERGY STAR

AC Output (EPS)		
Nominal AC Voltage (3Φ)(\	/)	120/208
Grid Frequency (Hz)		50 / 60
Real Power, Max continuou	s (3Φ)(kW)	30
Max. Output Current (A)		83.4
Peak Apparent Power (10s,	off-grid, 3⊕)(kVA)	45
Max. Grid Passthrough Cui	rrent (10min)(A)	200
Continuous Grid Passthrou	ıgh Current (A)	180
Power Factor Output Rang	e	±0.8 adjustable
Backup Transfer Time		5ms (adjustable)
CEC Efficiency		96.5%
Design (DC to AC)		Transformerless DC
General Parameters		
Product Model		R-EC060030A1-US
System Scalability		Up to 6 in parallel
Dimension - W*D*H (in)		29.5*37.4*91.3
Weight Approximate (lb)		~2314
Operation Temperature (°C	C/°F)	-30~55/-22~131
Communication Interface	C	AN, RS485, WiFi, LTE
Humidity	5%~85%	%, non-condensation
Altitude :	≤4000m/13122ft(200	0m/6561ft derating)
IP Rating		IP55
Storage Temperature		-20~35/-4~95
Recommend Depth of Disc	charge	90%
Cycle Life		>8000 cycles
Warranty		10 years
Certification(Battery)	ANSI/	/CAN/UL 1973:2022 CAN/UL 9540:2020 rt 15 Subpart B:2023
Certification(Inverter)	CSA C22.2 No 107 & 1547a-2020 & 154	1741-2021 (UL1741SB) ?1-16, IEEE 1547-2018 47.1-2020 (SRD V2.0) L1699B, CEC, SGIP 4

MPack 233A

233kWh Liquid-Cooling Battery

MPack 233A is a high-performance energy storage solution for commercial and industrial use, featuring optimized thermal management, efficient energy cycling, advanced fire and gas detection, and intelligent power management for reliable and scalable energy integration.

Product Function

Advanced Energy Storage

Stores 233kWh of electricity for future use, ensuring a reliable energy reserve. It supports integration with multiple power sources, including solar energy, diesel generators, and the grid, offering versatility in energy input.

Smart Load Management

Balances grid demand by charging during off-peak hours and discharging during peak hours, optimizing energy distribution. By leveraging time-of-use pricing, it helps reduce electricity costs and enhance overall energy efficiency.

Intelligent Energy Management

Optimizes charging and discharging efficiency through an advanced Energy Management System (EMS). With remote monitoring and real-time control capabilities, it enhances operational oversight and improves energy utilization.

Reliable Backup Power

Provides a dependable backup power supply during grid failures, keeping critical equipment operational. With seamless, uninterrupted power delivery, it is ideal for mission-critical applications such as data centers and hospitals.

RENON

Independent Off-Grid Power

Delivers a stable power supply to homes, businesses, or communities in off-grid areas, enabling independent operation. As a key component of microgrid systems, it ensures efficient and reliable energy distribution.

Scalable & Flexible Design

Features a modular design that supports parallel system integration for seamless capacity expansion. Its customizable configuration allows adjustments in power output and storage capacity to meet specific energy demands.

High Energy Density

Designed with high-energy-density 1P52S 280Ah batteries, this system offers a compact size, making it ideal for space-constrained environments. Its optimized structure reduces weight, enhancing ease of installation and transportation.

Long Lifespan

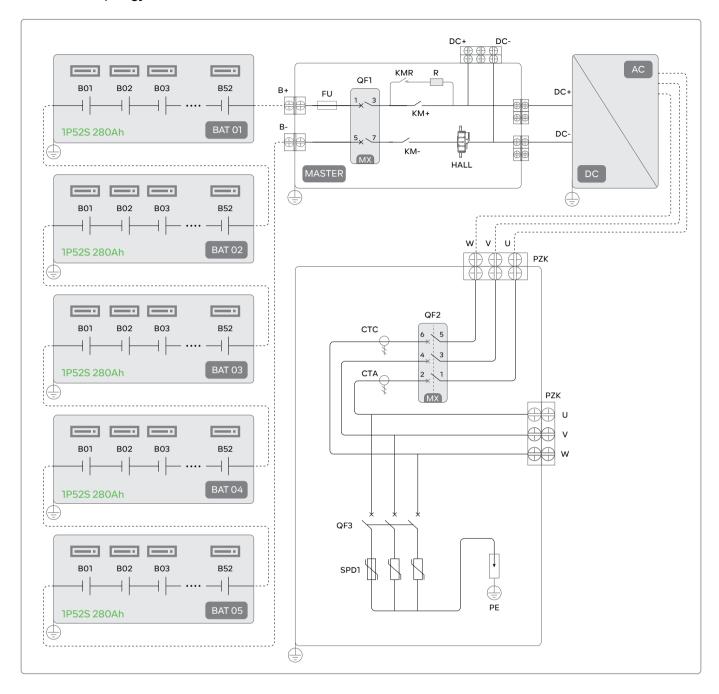
Designed for longevity, it supports over 8000 charge-discharge cycles with minimal degradation, ensuring stable long-term performance.

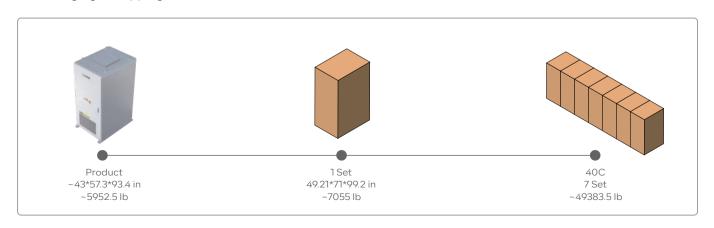
High-Efficiency Conversion

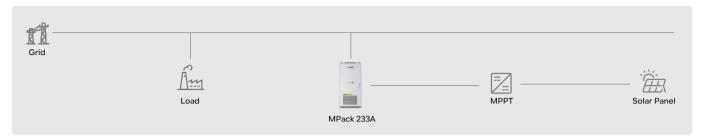
With superior charge and discharge efficiency and a charge/discharge current of 150A, it minimizes energy loss while delivering millisecond-level response times to meet urgent power demands.

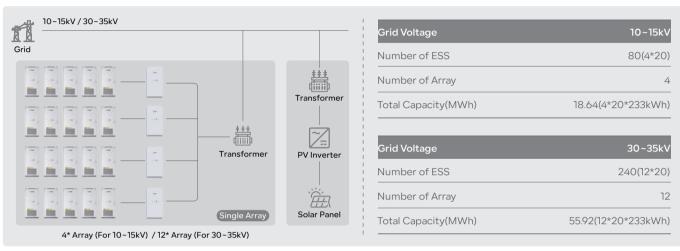
Safe & Reliable

Equipped with multiple protection mechanisms, including safeguards against overcharging, over-discharging, overheating, and short circuits. With an IP54 protection rating, fire-resistant materials, and a flame-retardant design, it further enhances operational safety.

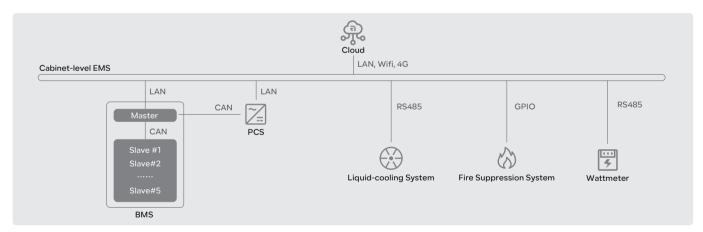

Application Scenario

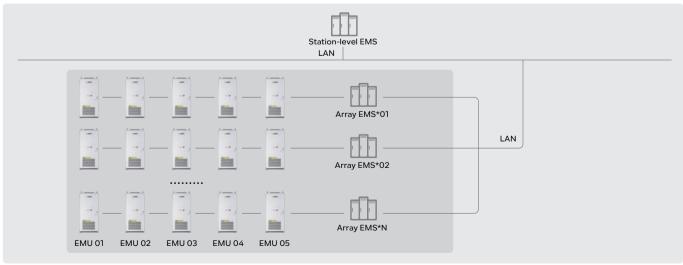



Product Topology



Packaging & Shipping Details




Single / Max. Parallel System Layout

Energy Management System(EMS) Structure

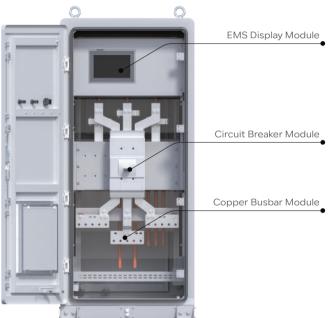
Product Parameter

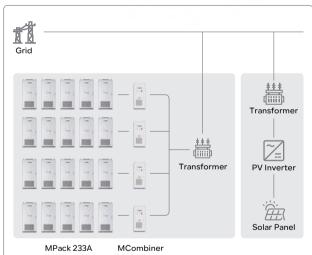
Battery Energy Storage	
Cell Type	LFP 3.2V / 280AI
Module Combination	1P52
System Combination (Modules)	5 in serie
Capacity (kWh)	23:
Nominal Voltage (V)	83:
Voltage Range (Vdc)	702~936
Discharge Depth	90% DoI
Thermal Management Mode	liquid cooling
Thermal Control Management	Aerosol Extinguishing
AC Output	
Rated AC Output Power (kW)	12!
Max. AC Output Power (kVA)	137.
Rated Output Voltage (Vac)	480
Output Voltage Range (Vac)	-15%~10%(settable
Rated Grid Frequency (Hz)	60(settable
Max. Output Current (A)	165.
Adjustable Power Factor	>0.90
THDi	< 3%
DC Input/Output	
Max. Power (kW)	250
Voltage Range (V)	761~92:
Max. Current (A)	320
* The charging power of the DC interface is related to t	ne load power, battery SOC and temperature. The discharge power of the DC interface is related to the battery's state of charge
System Characteristic	
Communication Interface	CAN, RS485, WiFi, LTI
Warranty	5 years
Certifications	ANSI/CAN/UL 1973:2022, ANSI/CAN/UL 9540:2020, UL 9540A:2019, UL 1741:2012 Ed.3+R:19May202: UL 1741:2021 Ed.3(Supplement SB), CSA C22.2#107.1:2016 Ed.4+U1, IEEE 1547:2018,IEEE 1547.1:2020
General Parameters	
Battery Model	R-MP233125A0-U
Dimensions - W*D*H (in)	43*57.3*93.4(±10%
Total Weight (lb)	5952.5(±10%
Operation Altitude	≤4000m/13122ft (2000m/6561ft derating
Noise Level @1m	<75 dB(A
IP Rating	IP5
Operating Temperature (°C/°F)	-20~55/-4~13
Operating Humidity (RH)	0 to 95%, non-condensation
Storage Conditions	-20~30°C/-4~86°F, Up to 95% RH, non-condensation, State of Energy (SoE): 50% initia

MCombiner

On Grid Switching Combiner

Secure Grid Interface: Acts as a pure grid-tied distribution cabinet without PCS, offering safe and stable connection for energy storage systems.

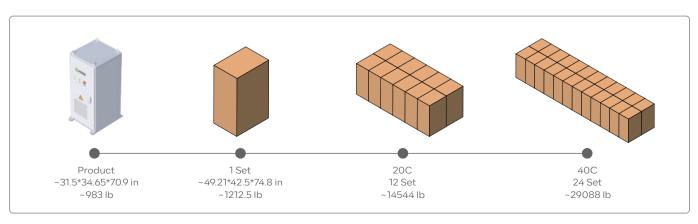

High-Efficiency Power Routing: Supports multi-loop battery access and DC bus integration with smart communication for optimized charge/discharge control.


Reliable Protection Design: Features short-circuit protection, insulation monitoring, surge protection, and flame-retardant cabinet materials.

Intelligent Monitoring & Communication: Built-in HMI display with Modbus TCP/IEC 61850 support for seamless EMS/SCADA integration.

System Demonstration

Application Scenario



Product Parameter

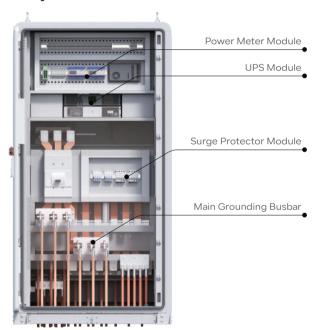
Product Parameter	
Input Voltage (Vac)	480
Access Channel	5
Output Channel	1
Rated Power (kW)	625
Rated Current(A)	751
Anti-backflow Protection for Power Grid	Functions Included
Pcs (Power Conversion System) Switch (A)	250
Grid Switch, Load Switch (A)	1000
General Parameters	
Battery Model	R-MC625ACC01-US
IP Rating	IP54
Dimensions - W*D*H (in)	~31.5*34.65*70.9
Total Weight (lb)	~983
Operating Temperature (°C/°F)	-20~55/-4~131
Storage Temperature (°C/°F)	-20~35/-4~95
Relative Humidity (RH)	0~95%
Altitude	≤2000m/6561ft
Noise Level @1m	<65 dB(A)
Communication Interface	RS485, CAN, LAN
Specifications Matched for Energy Storage Systems	233kWh ESS, Supports Parallel Connection of Up to 5 Units

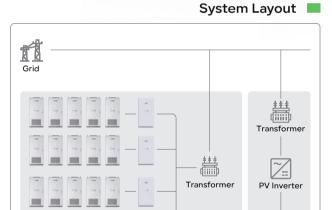
Packaging & Shipping Details

MCombiner Pro

On/Off Grid Switching Combiner System

Seamless Mode Switching: Supports both grid-tied and off-grid modes with automatic switchover to ensure uninterrupted power supply during outages.


High System Reliability: Built with premium components and advanced control algorithms to ensure long-term stable operation.


Comprehensive Protection: Equipped with overcurrent, short-circuit, and other protection features to safeguard the entire system.

Remote Monitoring & Control: Enables real-time remote monitoring and operation for efficient system management and troubleshooting.

Modular Architecture: Modular design simplifies installation, maintenance, and future capacity expansion.

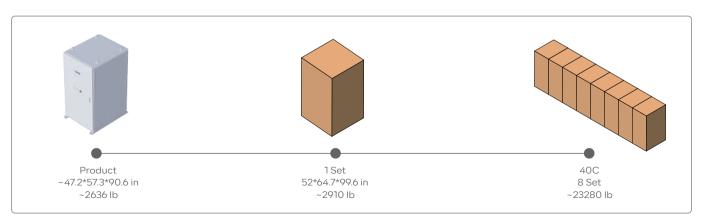
System Demonstration

MCombiner Pro

MPack 233A

RENON

Application Scenario


Product Parameter

Product Parameter	
Input Voltage (Vac)	480
Access Channel	5
Output Channel	1
Rated Power (kW)	625
Rated Current(A)	751
Grid-connected and Off-grid Switching Time	≤3min
Anti-backflow Protection for Power Grid	Functions Included
Pcs (Power Conversion System) Switch (A)	250
Grid Switch, Load Switch (A)	1000
General Parameters	
Battery Model	R-MCP625ACC01-US
IP Rating	IP54
Dimensions - W*D*H (in)	47.2*57.3*90.6
Total Weight (lb)	~2636
Operating Temperature (°C/°F)	-20~55/-4~131
Storage Temperature (°C/°F)	-20~35/-4~95
Relative Humidity(RH)	0~95%
Altitude	≤2000m / 6561ft
Noise Level @1m	<65 dB(A)

Packaging & Shipping Details

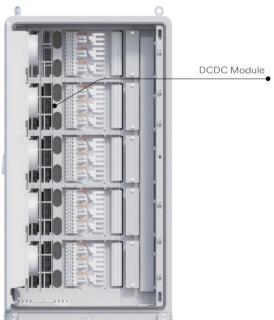
Specifications Matched for Energy Storage Systems

Communication Interface

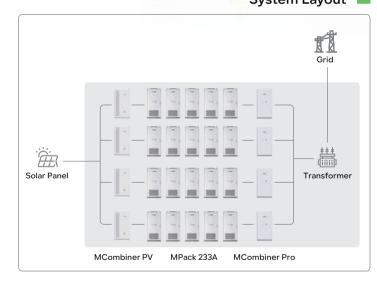
RS485, CAN, LAN

233kWh ESS, Supports Parallel Connection of Up to 5 Units

MCombiner PV


MPPT Combiner System

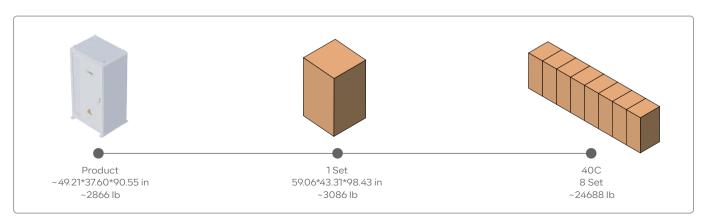
High-Efficiency Power Tracking: Equipped with advanced MPPT algorithms and multi-channel independent tracking, the system continuously locks onto the maximum power point, significantly increasing PV generation efficiency under varying conditions.


Intelligent Power Coordination: Seamlessly integrates with PCS and EMS systems to dynamically manage power output, optimize energy distribution, and enhance overall solar-plus-storage performance.

Comprehensive Safety Protection: Includes full-range DC-side protections such as reverse polarity, overvoltage, overcurrent, short-circuit, and surge protection. Supports anti-islanding, over-temperature protection, and PID suppression for stable and secure operation.

System Demonstration

Application Scenario



Product Parameter

PV Input	
Input Voltage(Vdc)	400~750
The Max. Static Voltage Borneunder No Operation(Vdc)	850
Rated Voltage(Vdc)	750
MPPT Operating Voltage Range(Vdc)	400~750
MPPT Full Load Voltage Range(Vdc)	400~750
MPPT Starting Voltage(V)	400
MPPT Efficiency	95.50%
Max. Input Current(Adc)	110*15
Number of MPPT	15
No. of PV Strings per MPP Trackers	4
DC Output	
Individual Module Output Power(kW)	40
Max. Number of Modules	15
Total Output Power(kW)	600
Output Voltage Range(Vdc)	50 ~ 1000
Output Current Range(Adc)	0~133.3@Per MPPT
Voltage Regulation Accuracy	<±0.5%(150~1000V, 0~20MHz)
Precision of Steady Current	≤±1%(Output load 20% ~ 100%)
Voltage Ripple Factor	≤1%
General Parameters	
Product Model	R-MC600PVC01-US
Type of Cooling	Forced Air-cooling
Dimensions - W*D*H (in)	~49.21*37.60*90.55
Total Weight (lb)	~2866
Communication Interface	CAN bus, LAN
Altitude	≤2000m/6561ft
Noise Level @1m	<75 dB(A)
IP Rating	IP54
Operating Temperature (°C/°F)	-20~55/-4~131 (above 55°C/131°F needs to be reduced)
Storage Temperature (°C/°F)	-20~35/-4~95
Relative Humidity	≤95%RH, non-condensing

Packaging & Shipping Details

MPack 233C

Cabinet Fast Charging Solution

MPack 233C is a high-performance energy storage solution for commercial and industrial use, featuring optimized thermal management, efficient energy cycling, advanced fire and gas detection, and intelligent power management for reliable and scalable energy integration.

Product Function

Stable & Reliable Performance

Featuring a 233kWh energy storage system, it delivers consistent power even during grid instability. An advanced thermal management system ensures efficient heat dissipation, enabling long-term stable operation.

Energy-Efficient & Eco-Friendly:

High-efficiency power conversion minimizes energy loss and lowers costs. Compatible with solar, wind, and supports CCS1 plus NACS charging interfaces for versatile EV integration and sustainability.

Space-Saving Design

The dual-gun charger adopts a compact design that conserves installation space, making it ideal for various application scenarios including urban and commercial environments.

Intelligent Management System

Supports remote operation and real-time monitoring for easier maintenance and control. It also logs detailed charging data, helping operators optimize energy usage and refine charging strategies.

Enhanced User Experience

Designed with user convenience in mind, it features an intuitive interface and supports multiple payment methods. Built-in protections like over-voltage and over-current safeguards ensure a safe and reliable charqing experience.

Cost-Effective Operation

Its high charging efficiency reduces power loss, improving overall energy utilization. Intelligent system control and optimized cooling also extend equipment lifespan, further reducing long-term operational costs.

Product Features

High-Power Fast Charging

Delivers up to 400 kW for ultra-fast EV charging and supports dual-vehicle charging to improve efficiency and reduce wait times.

Comprehensive Safety Protection

Equipped with over-voltage, over-current, over-temperature, and short-circuit protection, plus insulation monitoring and emergency stop for maximum safety.

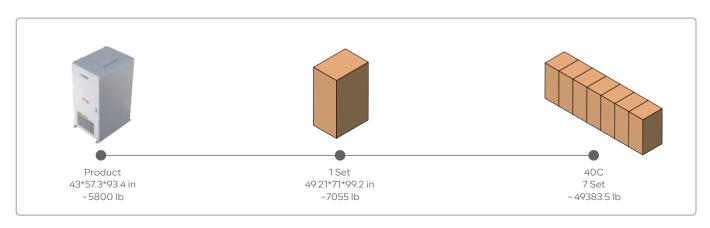
Integrated Energy Storage & Off-Grid Power

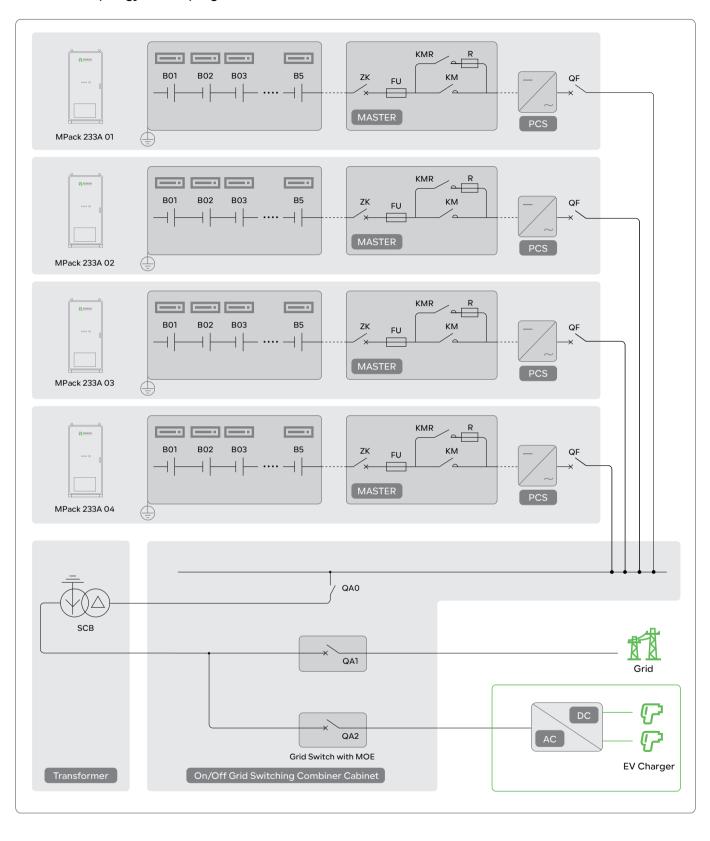
Features a 233kWh battery system that provides backup power during grid outages or peak hours, ensuring continuous charging even when off-grid.

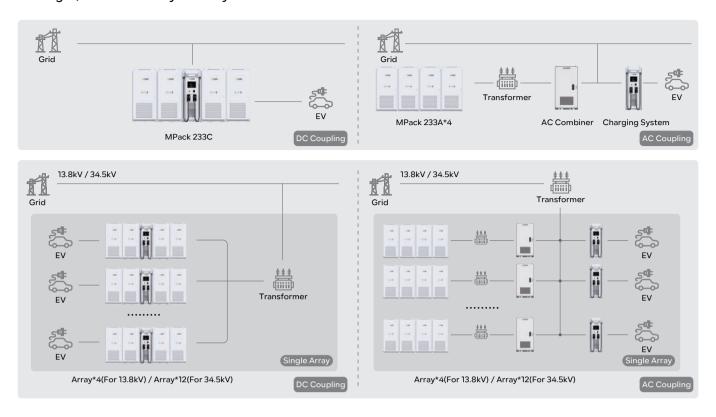
Smart Data Tracking & Energy Analysis

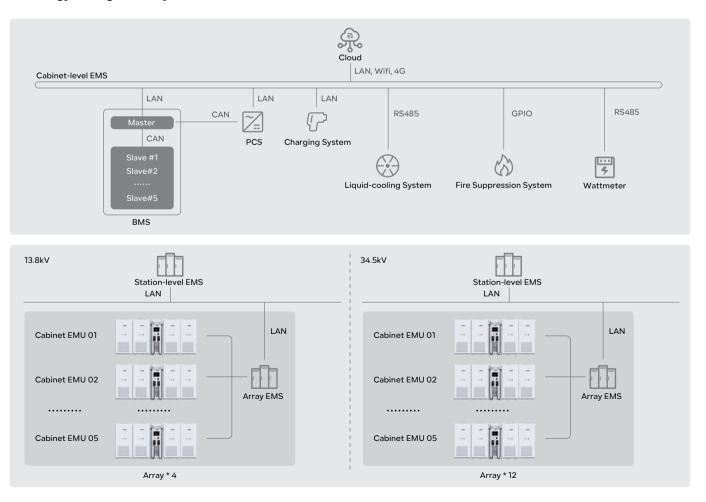
Automatically records detailed charging data, including energy usage, duration, and cost, for both users and operators. It also offers energy consumption reports to help optimize the operation and efficiency of the charging station.

Application Scenario




Product Topology(DC Coupling)


Packaging & Shipping Details


Product Topology(AC Coupling)

Single / Max. Parallel System Layout

Energy Management System(EMS) Structure

BESS Parameter

Battery Energy Storage	MPack 233C	MPack 466C	MPack 699C	MPack 932C
Battery Capacity(kWh)	233	466	699	932
Battery Charge/Discharge Rate		≤0	5C	
Battery Efficiency		≤9	5%	
Battery Module IP Rating		IP	54	
Battery Cooling System		Liquid-	cooling	
Thermal Control Management		Aerosol Ex	tinguishing	
AC Output				
Rated AC Output Power(kW)	125	250	375	500
Max. AC Output Power(kVA)	137.5	275	412.5	550
Rated Output Voltage(Vac)		48	30	
Output Voltage Range(Vac)		-15%~10%(Settable)		
Rated Grid Frequency(Hz)		60(Settable)		
Max. Output Current(A)	165.4	330.8	496.2	661.6
Adjustable Power Factor		>0	.99	
THDi	<3%			
DC/DC				
Max. Charge/discharge Power (kW)	250	500	750	1000
Voltage Range for Charge/discharge (Vdc)		761~923		
Max. Current (A)	320	576	864	1152
* The charging power of the DC interface is related to the load	power, battery SOC and temperatur	e.The discharge power of the DC interfa	ce is related to the battery's state of cha	arge
System Characteristic				
Communication Interface	CAN, RS485, WiFi, LTE			
Warranty		3 years free, paid from	the 4th to the 15th year	
Certifications	ANSI/CAN/UL 1973:2022, ANSI/CAN/UL 9540:2020, UL 9540A:2019,			

51 LITICALIOTIS	ANSI) CAN) OL 1773.2022, ANSI) CAN) OL 7340.2020, OL 7340A.2017,
	UL 1741:2012 Ed.3+R:19May2023, UL 1741:2021 Ed.3(Supplement SB),
	CSA C22.2#107.1:2016 Ed.4+U1, IEEE 1547:2018
	IEEE 1547.1:2020, FCC Part 15 Subpart B:2013
	•

General Parameters					
Battery Model	R-MP233125C1-US	R-MP466250C1-US	R-MP699375C1-US	R-MP932500C1-US	
Dimensions - W*D*H (in)	~86*57*91.3	~129*57*91.3	~172*57*91.3	~215*57*91.3	
Total Weight (lb)	8124(±11)	14429(±11)	20734(±11)	27039(±11)	
Operation Altitude	≤2000m / 6561ft				
Noise Level @1m	<80 dB(A)				
IP Rating	IP54				
Operating Temperature (°C/°F)	-20~55/-4~131*				
Operating Humidity (RH)	0 to 95%, non-condensation				
Storage Conditions	-20~30°C/-4~86°F, Up to 95% RH, non-condensation, State of Energy (SoE): 50% initial				

 $^{^{\}star}$ We can offer a wider range of temperatures if required, please speak to one of our sales colleagues.

Charging System Parameter

Power Input	
Input Voltage(V)	832(600~1500)
Rated Current(A)	495
Power Output	
DC Voltage(Vdc)	200~1000
Max. Current(A)	400
Max. Power(kW)	400
Efficiency	>97%
Voltage Stabilized Accuracy	≤±0.5%
Current Stabilized Accuracy	≤±1%
Current Sharing Unbalance	≤±3%
Peak-peak Ripple	≤1%
Sturcture Design Installation Method	Floor-stand
	DC CCS1, NACS
Charging Outlet	5.0m
Cable Length	
LED Indicator	Yes
Authentication	RFD, On-screen PIN code authorization Option: payment terminal Autocharge Other Customization
Communication	
Charger v.s. EV	PLC(DIN 70121:2014-12/ISO15118)
Communication Protocol	OCPP 1.6J
Safety Protection	
Over/under Voltage Protection	Yes
Over Current Protection	Yes
Overload Protection	Yes
Short Circuit Protection	Yes
Leakage Protection	Yes
Over Temperature Protection	Yes
Grounding Protection	Yes
Integrated Surge Protection	Yes
General Parameters	
Battery Model	R-SP400C01-US
Dimensions - W*D*H (in)	~43*35.4*91.3
Total Weight (lb)	~1818.8
Operating Temperature (°C/°F)	-30~50/-22~122
Humidity (RH)	5%~95%, non-condensation
Operation Altitude	≤2000m/6561ft
IP Rating	IP55
IK Rating	IK10(HMI: IK08)
Application Site	Indoor/Outdoor
Cooling Method	Air-cooling
Noise	<65dB(Ambient Temperature)

Smart Matrix A

10ft Battery & Boost Converter One Stop Solution

Product Function

BMS Battery Management System

The BMS ensures safe and efficient operation of the battery by monitoring key parameters such as voltage, temperature, and charge/discharge status. It helps to extend battery life, improve performance, and prevent issues like overcharging or overheating.

UPS Uninterruptible Power Supply

The UPS function ensures continuous power during grid failures or disruptions, maintaining stable operation of critical equipment like data centers or communication stations, thus enhancing system reliability.

Multi-Unit Parallel Operation

Smart Matrix A supports multi-unit parallel operation, enabling scalable capacity expansion. This feature ensures flexibility and reliability, making it suitable for both small and large-scale projects

EMS Energy Management System

The EMS optimizes energy flow within the system, dynamically adjusting charging and discharging strategies based on demand and grid conditions. It enhances efficiency, reduces energy costs, and integrates with grid systems for stable power management.

Highly Integrated Design

Smart Matrix A combines core components including PCS , battery system, BMS into a single unit. This reduces the need for external connections, saving installation space and costs. Its modular architecture supports flexible capacity expansion to meet varying energy storage demands

Fire Protection

Equipped with advanced fire protection features, including temperature control and fire detection systems, Smart Matrix A ensures safety by automatically activating emergency measures in case of abnormal conditions, minimizing fire risks.

Product Features

High Integration

The liquid cooling system battery box offers the highest capacity with the latest dimensions, requiring minimal space while providing flexible transportation and installation options.

Efficient and Flexible

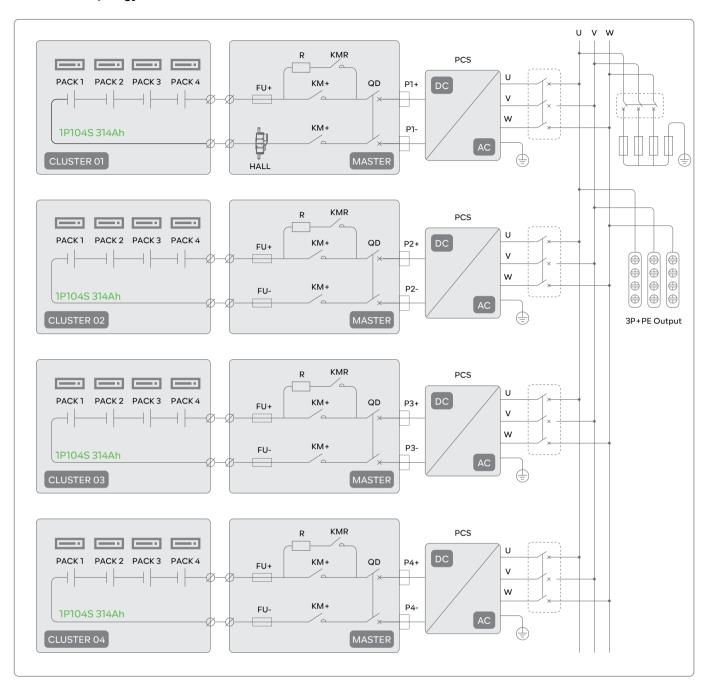
Featuring a modular structure and an efficient liquid cooling system, it is designed to perform well in extreme environments, maximizing battery lifespan and performance.

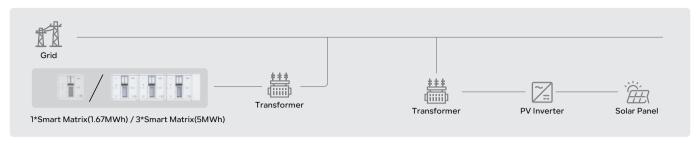
Safety and Reliability

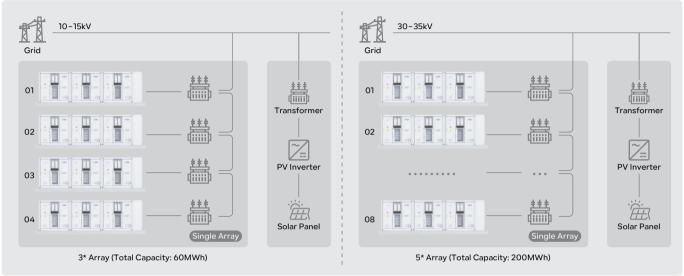
Equipped with comprehensive battery monitoring, multi-layer fire prevention, top ventilation design, and active AI management to ensure maximum safety and reliability.

Smart Operation and Maintenance

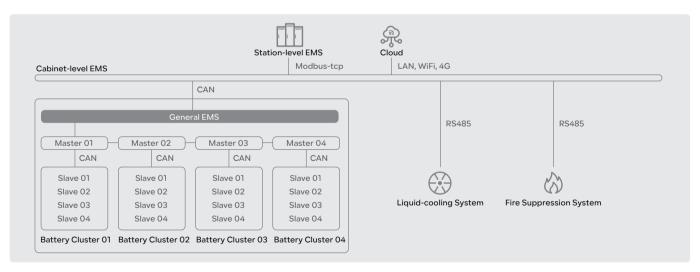
Comes with a complete EMS that is easy to upgrade, featuring big data management checks, proactive handling, and intelligent SOC calibration to ensure optimal performance with zero downtime.

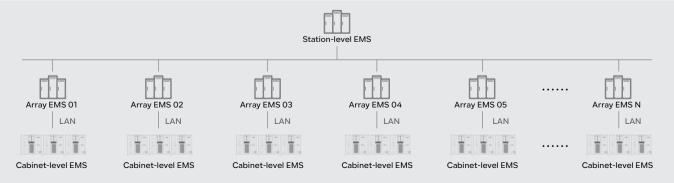

Application Scenario


Product Topology



Packaging & Shipping Details




Single / Max. Parallel System Layout

Energy Management System(EMS) Structure

BESS Parameter

Battery Energy Storage	1672kWh	3344kWh	5016kWh
Cell Type	LFP 3.2V/314Ah		
Module Configuration	1P104S		
String Configuration	1P416S		
Number of Battery System	1	2	3
Number of Strings	4	8	16
Capacity (kWh)	1672	3344	5016
Nominal Voltage(V)	1331.2		
Operation Voltage Range(Vdc)	1218.88~1476.8		
Discharge Depth	90% DoD		
Thermal Management Mode	Liquid Cooling		
Thermal Control Management	Aerosol Extinguishing or PFH		

AC Output			
AC Output Power(kVA)	860	1720	2580
Rated Output Voltage(Vac)	690V, 3W+PE		
Rated Grid Frequency(Hz)	50/60		
Power Factor	-1~1		
THDi	<1.5% (100% load)		

System Characteristic	
Communication Interface	CAN, RS485, Ethernet
Warranty	3 years free, paid from the 4th to the 15th year
Systerm Certifications	UL9540A, UL9540, UL1973, UN3536
PCS Certifications	UL1741, IEEE1547, IEEE1547.1, CSA C22.2 No 107.1

General Parameters			
Product Model	R-SM1672860A1-US	R-SM33441720A1-US	R-SM50162580A1-US
Dimensions - D*H (in)	96*102.1	96*102.1	96*102.1
Dimensions - W (in)	117.76	235.52	353.27
Battery System Total Weight (lb)	~33069	~66138	~99208
Operation Altitude	4000m / 13000feet (>3000m/10000feet derating)		
Nosie Level@1m	<75dB		
IP Rating	IP54		
Operation Temperature (°C/°F)	-20~55 / -4~131 (De-rating over 45°C / 113°F)		
Operation Humidity (RH)	≤95%, No condensation		
Storage Conditons	-20°C to 30°C, Up to 95% RH, non-condensing, State of Energy (SoE): 50% initial		

Combiner System Parameter

Product Parameter	
Input Voltage (Vac)	690V, 3W+PE
Access Channel	3
Output Channel	1
AC Output Power (kVA)	2580
Max. AC Output Current (A)	2378.4
Grid/Load switch (A)	2500
General Parameters	
Battery Model	R-SC2580ACC01-US
Dimensions - W*D*H (in)	~31.5*86.6*103
Total Weight (lb)	~1653.5
Communication Interface	RS485, CAN, LAN
Specifications Matched for Energy Storage Systems	1.67MWh ESS, Supports Parallel Connection of Up to 3 Units

XGen

Vehicle-mounted Mobile Power Supply

XGen is a highly adaptable and energy-efficient power solution, offering multiple output options (120V, 208V, 240V, 480V) to ensure high performance, flexible operation modes, and broad compatibility across diverse applications.

Product Function

Power Generation & Storage for Max. Efficiency

No need for high-power generators—XGen intelligently balances PCS power and generation to reduce fuel consumption.

Versatile Compatibility for All Power Needs

Multiple voltage outputs (480V, 208V, 240V, 120V) for residential, commercial, and industrial use.

Flexible Power Modes for Any Scenario

With a large 560kWh capacity, it supports hybrid, off-grid, AC/DC coupling, and more, adapting seamlessly to diverse energy needs.

High-Power Output, Handles Heavy Loads with Ease

Delivers up to 324kW instant output, ensuring stable power supply for demanding applications.

Smart Management with Remote Control

Built-in EMS system enables real-time monitoring and remote control via Web & App for effortless operation.

All-in-One Charging Solution

Supports Combo fast charging, Type-C & Type-A ports, powering EVs, storage systems, and digital devices.

Product Features

Multi-Source Energy Input

Powered by a 560 kWh LiFePO4 battery, supporting grid, diesel generators, and 120 kW solar DC charging for seamless energy integration.

Portable Durability

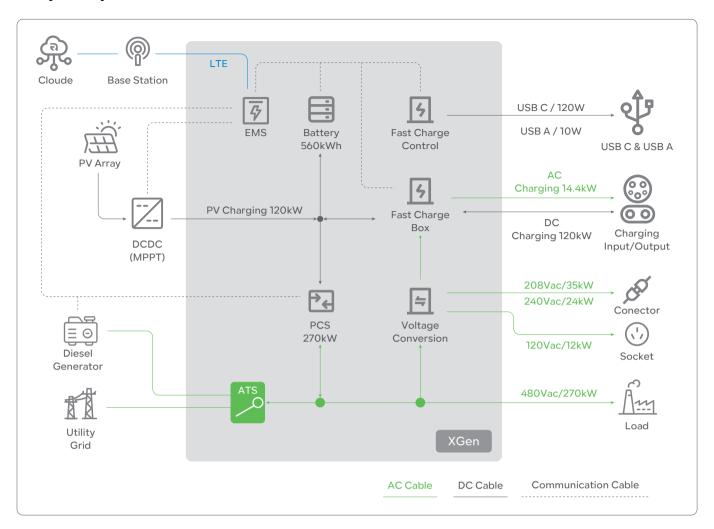
Towable for rapid deployment, with IP54/NEMA 3R protection ensuring durability in harsh environments.

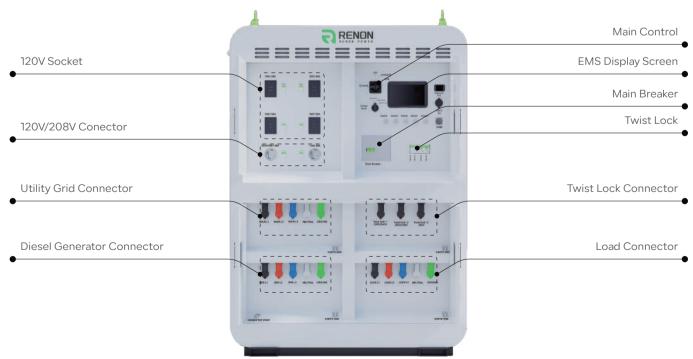
Optimized Generator Usage

Pairs with 400kVA generators, reducing upfront investment, fuel consumption, and maintenance costs for smarter power solutions.

Smart Operation and Maintenance

Comes with a complete EMS that is easy to upgrade, featuring big data management checks, proactive handling, and intelligent SOC calibration to ensure optimal performance with zero downtime.


Application Scenario



System Layout

System Interface

Choosing the right generator solution

Assumed Load for System Design: Peak Power: 600kW, Rated Power: 260kW

If a Diesel Generator is used as the power source:

- An initial overpurchase of a high-power DG is required to accommodate the maximum starting current of the motors.
- High fuel consumption is inevitable due to frequent motor startups and prolonged operation at low power.
- Conventional diesel generators do not support capacity expansion.
- High maintenance costs caused by frequent motor starts and significant inrush current.

Not suitable because of the load's high inrush current.

There's no need to purchase a high-capacity DG thanks to the shared power output from the XGen.

8

- (C) XGen PROPOSAL
- Reduced upfront investment for a low-power DG.
- Reduced fuel consumption.
- Enable simultaneous operation of multiple DGs.
- Reduce maintenance expenses.

Product Parameter

Battery Energy Storage	
Cell Chemistry	LiFePO4
Nominal Energy (kWh)	560
Voltage Range (Vdc)	750~908.8
Nominal Charging Current (A)	330
Nominal Discharging Current (A)	330
Max. Discharging Current (A)	400
DOD	90%
Mobile Charging	300
USB C *1 (W)	120
USB A *1 (W)	10
PV Input	
Input Power (kW)	120
Input Voltage Ranger (Vdc)	750~908.8
AC Output(480Vac On-Grid)	
Rated Power (kVA)	270
Rated Voltage (Vac)	480 (-15%~15%)
Rated Frequency (Hz)	60 (-5~5)
AC Connection	3P4W
THDi	≤ 3%
Voltage Ripple Coefficient	≤ 1%
Power Factor	0.99/-1~
AC Output(For Load 480Vac Off-Grid)	
Rated Power (kVA)	270
Max. Power (kVA)	324
Rated Voltage (Vac)	480(±15%)
Rated Frequency (Hz)	60(±5
AC Connection	3P4W
Power Factor	0.99/-1~
100 1 1/5 0 1 1001/ 0 1 1	
AC Output(For Conector 208Vac Output)	20
Rated Power (kVA) Pated Voltage (Vac)	35
Rated Voltage (Vac)	208
AC Connection	3P4W
AC Output(For Conector 240Vac Output)	
Rated Power (kVA)	24
Rated Voltage (Vac)	240
AC Connection	2P3W

AC Output(For Socket 120Vac Output)	
Rated Power (kVA)	12
Rated Voltage (Vac)	120
AC Connection	1P2W

EV Charging & Charging ESS(AC Charging)		
Interface Type	Combo (SAEJ1772)	
Current Rating (A)	60	
Power Rating (kW)	14.4	
Input/output Voltage (Vac)	240±10%	
Input Frequency (Hz)	60	
AC Connection	2P3W	

EV Charging & Charging ESS(DC Charging)	
Interface Type	Combo (SAEJ1772)
Rated Power (kW)	120
Output Voltage (to EV) (Vdc)	150~1000
Input Voltage (to ESS) (Vdc)	750~908.8

Compatible Diesel Generator	
Rated Power (kVA)	≤400
Rated Voltage (Vac)	480
Rated Frequency (Hz)	60

General Parameters	
Product Model	R-XG560270H1-US03
Parallel Capable	Yes (Up to 6)
Ingress Rating	IP54 / NEMA 3R
Operating Temperature (°C/°F)	-20~55/-4~131
Storage Temperature (°C/°F)	-40~65/-40~149
Relative Humidity	5~ 95% (No condensing)
System Noise (dB)	<75
Cooling	Air cooling
Fire Suppression System	Included
Altitude(m)	5,000 (>3,000 derating)
Certifications UL1741, I	UL1973, UL9540, UL9540A JL9741, UL2202(UL2231-1, UL 2231-2) UL991, UL1998
Dimensions - W*D*H (in)	69*163*79
Weight (lb)	~12,786.8

ProControl Base

Cabinet Level Local ESMU

High-end integrated display and control system for commercial and industrial energy storage solutions.

Features

High-Performance Data Processing MCU

Equipped with a powerful processor and ample memory, ensuring fast response to demand-side instructions and efficient data processing.

Advanced Graphics and AI Capabilities

Featuring advanced graphics processing and AI capabilities, offering robust performance for enhanced device intelligence.

High-Brightness Full-View Touch Display

1280*800 resolution, 45cd/m² brightness, full viewing angle, and three-point capacitive touch screen, allowing easy viewing of system data and settings both indoors and outdoors.

Independent Smart Local Control

Built-in modes such as self-use, peak shaving, PV priority, grid priority, backup, and battery modes provide convenient local operation. Supports local intelligent monitoring, data curve generation, parameter settings, firmware updates, maintenance report generation, and log recording for simplified after-sales service.

Flexible Cloud Connectivity

Supports multiple interfaces including LAN, WiFi, and LTE for versatile cloud platform connections based on customer needs.

Comprehensive Communication & Control Interfaces

Includes CAN, RS485, RS232, Type-C, USB3.0, LAN, TF card slot, Nano SIM, HDMI, and RTC interfaces, enabling connection to various external devices and sensors for centralized management and control.

Interface Showcase

Parameters

General Parameters		
CPU	RK3568 4xA53@2.0GH:	
Memory	RAM: 4GB, EMMC: 64GB, EEPROM:64KB, SSD: 1T(Optional)	
GPU	Mail	
NPU	Support 1 Tops computing power	
OS	Ubuntu 20.04	
Brightness	450cd/m ²	
Resolution	1280*800	
Angle	Full viewing Angle	
Touch	3 point capacitive screen	
Communication interface	3* CAN, 6* RS485, 1*RS232, 1*Type-C, 1* USB3.0, 4* 1000Mbps, Lan, 1* TF card, 1* Nano SIM card, 1* HDMI, 1* RTC	
Control interface	12* DO, 16* DI, 2* NTC, 1* Buzzer	
Wireless communication	Wifi/BT, 4G, GPS	
IP Rating	IP65	
Operating temperature (°C/°	F) -20~70/-4~158	

ProControl Prime

Station Level Local EMS

Reliable control and display solution for large distributed energy storage systems.

Features

Information Summarization and Monitoring

EMS collects and uploads operational data of distributed energy storage systems for centralized monitoring. It displays system trends, performance metrics, and fault history to help users optimize operations.

Strategy Algorithm Configuration

EMS offers flexible strategy algorithms for customizing energy storage system operations based on specific needs and system conditions. This allows for optimal energy dispatch and management to maximize efficiency and cost-effectiveness.

Alarm Generation and Handling

EMS provides a user-friendly tool for creating graphical interfaces of energy storage systems. It allows real-time monitoring and management through topology, status diagrams, and device controls.

Energy Metering and Anti-Reverse Flow Control

EMS handles energy metering and anti-reverse flow control, effectively managing energy flow within the storage system and ensuring stable PCS operation.

BMS Data Collection and Display

EMS communicates with Battery Management Systems (BMS) to collect real-time data on battery parameters and displays it graphically. This includes battery health, charge/discharge status, SOC, and SOH.

Profit Analysis

EMS includes robust profit analysis capabilities for in-depth assessment of energy storage system operational data. This analysis helps users evaluate economic benefits, providing strong support for decision-making.

Interface Showcase

Parameters

General Parameters	
СРИ	2U Rack Server
Memory	Intel® Xeon® Gold 5218 Processor 22M Cache, 2.30 GHz, Qty 2
Hard disk capacity	64G
NIC	3*1.2T SAS
PCIE	4 Gigabit LAN cards6 PCLe 3.0
Power Supply	slots 550W power supply*2
Chassis Size	Chassis Specifications: 445*87*746mm
IP Rating	IP20
Operating Temperature (°C/°F)	5~40/41~104
Operating Humidity	85% RH

Renon Smart

Cloud Energy Management System

We're Using Smart Power to Simplify Your Life.

Renon Smart is a comprehensive device management and monitoring solution for national agents, secondary agents, installers and users.

Comprehensive system for managing large-scalepower station and commercial and industrial energy storage systems

Features

Instant Clarity with Remote Data Monitoring and Analysis

Remote data monitoring, automatic curve generation, and big data analysis management make the product operation status clear at a glance.

Enhanced Security with Distributed Architecture and Data Encryption

Distributed architecture deployment and data security encryption ensure that cloud data is more secure and reliable.

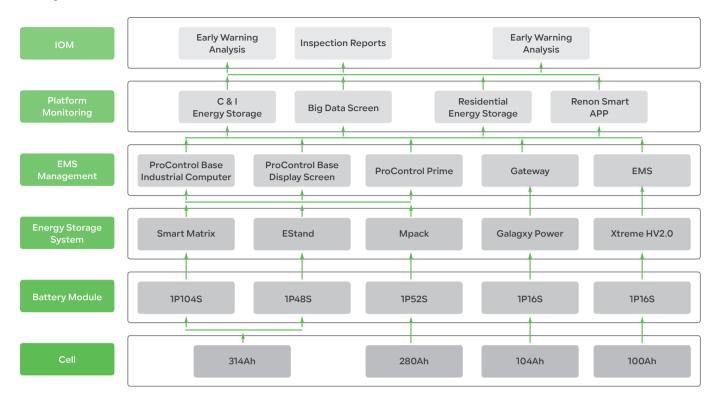
Seamless Connections with Intelligent Mall and Trial Applications

Intelligent mall application and new product trial application enable users to contact source manufacturers directly, making product promotion faster and more accurate

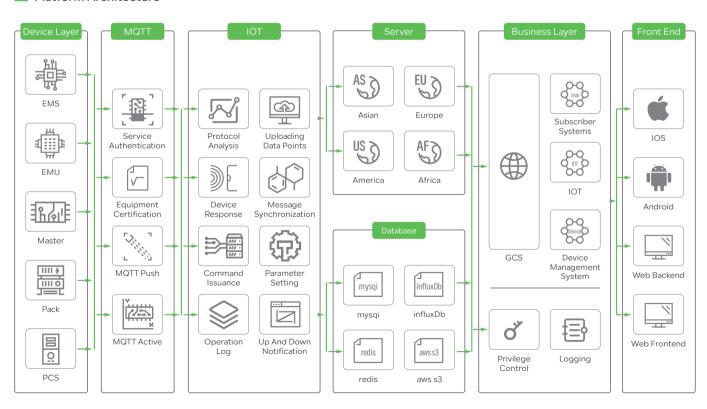
Boost Customer Satisfaction with Remote Firmware Upgrades

Remote firmware upgrading and intelligent operation and maintenance report generation effectively improve customer satisfaction.

Optimized Channel Construction with a Six-Level Distribution System


The six-level distribution system, from the brand owner to end-users, is more conducive to robust product channel construction

Interface Showcase



Physical Link

Platform Architecture

Installation Cases

Renon Power's global installations of microgrid systems enhance energy efficiency and sustainability, providing reliable power solutions for diverse commercial and industrial applications.

MPack 233A*5 Austria, USA

ECube 38D Chiba Prefecture, Japan

Smart Matrix A Kitakyusyu, Japan

ECube 215D*9 Togikiken Kanuma, Japan

ECube 15D*4 Saitama, Japan

Renon DC ECube 215kWh*

Renon DC Ecube 38kWh*4

Gunma prefecture, Japan

Utsunomiya, Japan

Renon Exhibition

At Renon Power, our team is our greatest asset.

We are a diverse group of passionate professionals, united by a shared mission to make green power within reach.

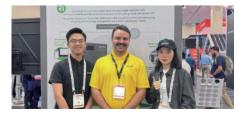
Intersolar 2025 Europe

Germany

RIMINI Expo Italy

Intersolar 2025 San Diego

The United States


PV EXPO 2025 Tokyo Japan

RE+ 2024 The United States

Note Book

PROVIDE	
INNOVATIVE,	
RELIABLE, AND	
AFFORDABLE	
ENERGY	
STORAGE	
SOLUTIONS TO	
CUSTOMERS	
WORLDWIDE.	
0	
9 (X1000)	
,	
• •	
© atmin	
ere g	
9	
Manager Workship Co.	
In Clark	
) <u>A</u>	
- I	

Note Book

PROVIDE	
INNOVATIVE,	
RELIABLE, AND	
AFFORDABLE	
ENERGY	
STORAGE	
SOLUTIONS TO	
CUSTOMERS	
WORLDWIDE.	
8 SHOW	
• 45	
J	
··	
£5 econio	
7	
ACTION DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COL	
lood lood	
1 *	
B III B	
-	

Renon Power USA LLC

580 McIntyre Rd. McKinney, TX 75071

Renon Power Solutions Sp.z o.o.

ul. ELBLĄSKA 1, 93-459, ŁÓDŹ, POLAND

Renon Power Technology B.V.

Rietbaan 10, 2908 LP Capelle aan den IJssel

Renon Power 株式会社

東京都中央区日本橋箱崎町 20-5 VORT 箱崎 5F

瑞智新能源(惠州)有限公司

广东省惠州市惠阳区三和街道下桥背康易工业园

Whatsapp

Linkedin

Website